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Abstract--The droplet size distribution function for sprays is derived using the maximum entropy 
formalism (MEF) to link the end stage of the atomization process to an intermediate state, characterized 
by unstable liquid cylinders. The probability density function, PDF, for droplet diameter, 6, is mainly 
governed by conservation of mass and the energy equation. Many of the small droplets are supposedly 
created together with a much larger droplet, i.e. are supposed to be satellites. A dual PDF, ft(6, 6"), 
represents the number of satellites of diameter 6 corresponding to a central or primary drop with diameter 
6*. The representation space is extended with the primary droplet diameter 6* and the MEF is applied 
to derive the function .ft. The physical constraints are first related to parts of the liquid cylinders only, 
and some higher moments of the primary size distribution function, f0(6*), have to be known in order 
to be able to apply the MEF. Some problems inherent in the application of this formalism are examined. 
Without invoking fitting parameters or ad-hoc constraints the predicted PDFs are close to measured ones. 

Key Words: sprays, drop size, maximum entropy, distribution, satellite 

I N T R O D U C T I O N  

In this study the break-up of  a liquid sheet into droplets is studied with the aid of  the maximum 
entropy formalism (MEF).  The M E F  can be seen as an economic way to fulfil specific 
physical constraints to a process. It is not  a substitute for the deterministic laws that help 
us to predict, for example, particle trajectories. It provides us with probabilities o f  the 
equilibrium particle settling velocities and positions. This is very similar to the traditional t reatment 
o f  the extremal properties o f  thermodynamic  potentials. It would not  be appropria te  to declare that 
the M E F  is the clue to many  difficult two-phase flow problems. But it would be equally 
inappropriate  not  to investigate the possiblities o f  this formalism, especially in the realm of  
distribution phenomena  in two-phase flows where a variational approach  to entropy product ion  
has been found to work properly for some specific cases (van der Geld 1985; van der Geld & Ni jdam 
1991). 

The M E F  generally links two stages o f  a process; let, for ease o f  reference, these stages be denoted 
as A and B. Just as in the variational approach  o f  classical mechanics there is no a pr ior i  

justification for the choice of, for example, the Hamil tonian,  there is no a pr ior i  justification for 
the choice o f  constraints in the MEF.  If, however, external condit ions leading to stage A are such 
that a certain wavelength dominates,  the formalism should be provided with this information,  
either through the governing equations or  otherwise. I f  some details o f  the break-up process 
influence stage B, then the formalism should be provided with information concerning these details. 
If, for example, surface contract ion and liquid extraction in an intricate manner  combine to 
produce satellites, the formalism must  be allowed to accomodate  satellites. 

M a n y  authors  have contr ibuted to the knowledge of  the format ion of  droplet sprays (e.g. 
Lefebvre 1983). M a n y  practical correlations exist for the droplet size probabili ty density function 
(PDF)  but the best ones seem to suffer f rom a lack o f  theoretical foundat ion,  see Bhatia & Durst  
(1989). Most  o f  the theoretical studies do not  yield any description o f  the spray beyond some 
expression for an average or maximum drop diameter on the basis o f  the most  readily amplified 
disturbances. 
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The works of Dombrowski & Johns (1963), Sellens (1987) and Li & Tankin (1988) are of 
particular interest in the present work. The first authors split up the spray formation process into 
different, successive stages and their description of the first stage is adopted here. Sellens (1987) 
seems to have been the first to try the MEF, using basic conservation principles to predict drop 
size distributions. He added momentum and kinetic energy constraints to derive joint distributions 
of drop size and velocity. He also added an ad-hoc constraint which he called "partition of surface 
energy". This partition constraint was needed to reduce the number of small droplets in the PDF 
that had been obtained by merely using the conservation equations. An unknown parameter of 
the partition constraint was used to fit the predicted PDF to the extensive set of accurately 
measured distribution functions. The predictions of the present study will be compared to these 
data. 

Li & Tankin (1988) more or less modified the Sellens approach, but unfortunately made the same 
mistake as did Jaynes (1983) in the early days of developing the entropy formalism. This will be 
explained in this paper. 

In this study, an attempt is made to demonstrate that the MEF is suitable for predicting realistic 
droplet size distribution functions for sprays. Since considerable experimental evidence exist for the 
occurrence of satellites, an effort is made to account for this complicated mechanism. This is done 
with the aid of a comr~osite, quasi-multidimensional distribution function. Ad-hoc postulates are 
not introduced and no parameters are fitted to the experimental data. The number of constraints 
is kept as low as possible to maintain the clarity of the approach and the traceability of the physics 
and to emphasize that the MEF is in essence simple and straightforward. 

The physical picture underlying the model is thoroughly discussed. The applicability of the MEF 
is examined and the results are compared with experimental findings and results obtained by other 
authors. 

Outline of the approach 

This paper presents a formalism for calculating spray structures using: 

(1) A physical model for liquid sheet break-up. 
(2) A probability density function, f ,  for droplet sizes. 
(3) Overall mass and energy conservation. 
(4) Maximization of an entropy based on f subject to conservation constraints. 

It appears that previous studies used the latter three and required additional constraints to reach 
agreement with observations. This study specifies initial and final states in terms of ligaments and 
droplets, reducing the parameter space to be studied by adapting the function f for the occurrence 
of satellites and by confining constraints to "units", parts of ligaments. With the constraints, and 
remaining free parameters within ranges that are in agreement with experiments and produce legal 
PDFs, realistic functions result. 

THE PHYSICAL MODEL 

In this section the process of liquid sheet disintegration is examined. Satellite formation is 
discussed and then the basic set of equations are derived. 

The break-up of a liquid sheet 

A viscous liquid sheet in quiescent, inviscid, gaseous surroundings breaks up into cylindrical 
liquid rolls, ligaments, due to growing sinusoidal disturbances, as shown in figure 1. Surface 
tension, aerodynamic and liquid viscous forces govern this process (Lefebvre 1983; Ohnesorge 1936; 
Dombrowski & Johns 1963). 

In the model of Dombrowski & Johns (1963) a value for ligament diameter, t i t h e °  is computed. I,e lig , 

This value depends on the thinning rate: 

dth~o = 0.846 _~P. [ I ] lig 
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Here ~ ~P denotes an experimentally-determined mass mean diameter (MMD) and is not dimension- 
less. Although the computation is not particularly simple, the predicted value is close to reality 
according to the direct measurements of Sellens (1987): 

dligex p = (0.87 + 0.07) • xexp _ v 3 o ,  [ 2 ]  

with 0.07 being the standard deviation of  6 measurement data. Different experiments determined 
the value of  the mass mean diameter in [1] and [2]. 

The Dombrowski & Johns (1963) model has proven its validity and is now well-accepted (e.g. 
Theissing 1976). Their model describes disintegration into ligaments, whereas our model more 
particularly links the ligament stage with the droplet cloud. 

A typical value of  the ligament diameter, d~=, for air-water systems is 80 #m according to Sellens 
(1987). Ligament diameter ,~theo is adopted as a given input parameter for our model. In general, t~lig 

it depends on the nozzle geometry and upstream conditions. In the governing equations it will 
appear in some constraints, e.g. Cl and c2. 

The break-up of ligaments 
Each ligament, roughly a liquid cylinder or thread, suffers from disintegration by air action or 

liquid turbulence, as illustrated in figures 1 and 2. The ligament falls apart due to the physical 
mechanisms explained by Weber (1931) and Rayleigh (1878), with the most dominant wavelength, 
L, given by 

L = 4.5dti=. [3] 

This relation will be used in the mass and energy conservation equations. Our model is not based 
on deterministic or instability equations to actually compute the formation of  droplets from 
ligaments but follows a different route, the MEF. 

Since L is approximately uniform along the ligament, a "unit cell" can be defined as the part 
of  the liquid cylinder with length L that encompasses a primary droplet kernel and two halves of 
the liquid bridging between droplet kernels (see figure 1). Dombrowski & Johns (1963) have also 
computed the MMD,  630, but this value is predicted much less accurately than the wavelength L 
and the distance of ligament disintegration to the nozzle outlet. In their model each unit cell evolves 
into one single droplet with diameter ~30th~o. This yields values that systematically differ from 
experimental results (Dombrowski & Johns 1963; Sellens 1987; Theissing 1976): 

6e~p = F630th~o with 0.58 < F < 0.68. [4] 30 

" ' " - , t , % ¢  / 

02'i(i=.!./< 
Figure 1. Idealized disintegration of a liquid sheet into ligaments, after Dombrowski & Johns (1963), and 

idealized disintegration of ligaments into droplets. 
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Figure 2. Definition of spread of the mass equivalent diameter, $. 

For ease of  reference a mass equivalent diameter, 6, is defined by 

zd~gL/4 = ~zS3/6~63 = 1.5d~gL. [5] 

See figures 2 and 3. Combining [3] and [5], and putting 630th¢o = S, Dombrowski  & Johns (1963) 
obtained 

630 ~h~o = 1.88dlig , [6] 

which yields [2] after using [4] to correct for the experimental findings. 
However, the amount  of  surface energy that would have to be liberated during the unit 

disintegration is now easily computed to be ca. 21% of the originally available surface energy, 
xadligL; tr is surface tension. Since all this energy would have to be dissipated by internal droplet 
movements,  it is more likely that some part  of  the excess surface energy is spent in the formation 
of satellite droplets. More arguments for the occurrence of satellite drops will be given in the 
following. 

The formation of  satellites 

The discrepancies between the above theoretical and experimental values of  630 are partly due 
to the occurrence of satellite droplets and partly due to oversimplifications in the deterministic 
theories that are not discussed here. We do not follow a mechanistic approach in which 
simplifications are bound to occur, but will rather compare two different quasi-stationary states 
of  the fluid. The first is the ligament state and the second is the droplet cloud state. 

The diameter that corresponds to the largest of  all droplets that are formed in a unit cell is defined 
to be the primary drop parameter, 6". The other drops are called satellites and their diameter will 
be denoted by 3~. The predicted value of the mass equivalent diameter, ~, is adopted as an upper 

0 

fl 

0 . 7  1 1.6 = 1 I 

<'~> 6/6s0 

Figure 3. Schematic of the PDF, .11 of the dimensionless droplet diameter, 6, and some approximated 
values. 
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Figure 4. Schematic of unit cell disintegration and satellite distribution functions. 

bound for 6 *. Because of [5] this upper bound depends on djig, but the range of values accessible 
to 6" will be seen to be so large that the mean value of 6"  can be considered as an independent 
input parameter to our model. How this mean value is determined will be seen in the following. 

Both 6"  and 6s are made dimensionless by dividing by the v30"~exP, which typically amounts to 
100 #m. 

Note that the discrimination between primary droplets and satellites is obvious in the process 
of ligament disintegration but would be arbitrary in a droplet cloud. 

The liquid bridging connecting two droplet kernels in a ligament (see figures 1 and 4) appears 
to be unstable, which leads to the formation of  satellites (Tebel 1982; Beer & Chigier 1972; Mansour 
& Lundgren 1990; Chesters 1990). The formation of  satellites is a non-linear phenomenon occurring 
during a short time before break-off of  primary drops. The primary droplet itself is stable since 
relative velocities are too small to distort the large fluid contraction, as indicated by too low a value 
for the Weber number, We. In the later stages of spray development, aerodynamic forces may affect 
large drops but here only the primary stages that lead to the formation of  a droplet cloud are 
considered. 

There is some indication (Mansour & Lundgren 1990; Chesters 1990) that the liquid bridgings 
between a satellite and its neighbours is also unstable. This might cause repetition of the process 
of  liquid contraction in bridgings. The process stops as soon as the time of  disintegration, to, 
exceeds the time of  contraction into spheres. If d~,g = 80/~m, an order-of-magnitude analysis for 
a viscous water column yields to ~< 1/~s, see Tebel (1982). If the same order of  magnitude prevails 
in slightly viscous or non-viscous fluids, satellites are likely to occur since the emptying of relatively 
large liquid bridgings would take more time. 

The exact point at which subsatellite formation stops is irrelevant in the present analysis. 
The numerical analysis of Mansour & Lundgren (1990) shows that each unstable wavelength 

leads to satellite formation. Since, according to their results, all wavelengths exceeding nd~ are 
unstable, satellite formation should be a common phenomenon. 

Averaging over unit cells 

There are several reasons why different unit cells have different values for the mass equivalent 
diameter, S. 
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To begin with, each instability phenomenon has a stochastic character. It requires triggering by 
some external agency. In most stability analyses such an excitation mechanism is just supposed to 
exist. However, in the absence of external triggering, the instability phenomenon for some part of 
a ligament may be strongly delayed. In that case, the value of S will appear to be different for 
different unit cells, see figure 2. 

Other reasons for dispersion of S are the dispersion of wavelength and external causes influencing 
the growth rate. 

The average value of S is denoted by (S) .  Following Dombrowski & Johns (1963), we take 
( S )  = 6e3XoP/F = 1,66~ p, see [4] and figure 3. 

Due to the spread in S and the formation of satellites, the value of the primary drop diameter, 
6", is spread around some mean value, (6)*.  The probability of finding a primary droplet diameter 
in the range [6 *, 6 * + d6 *) is denoted by f0(6 *) d6 *, with f0 assumed to be Gaussian distributed: 

J0 = A kx/-k~ e x p ( - k  {6" - (6*)}2). [7] 

The PDF f0 represents the chance of getting a primary drop when selecting a droplet out of all 
droplets that are formed out of a unit (an ensemble of units has to be considered to obtain a PDF). 
The value of A, therefore, only equals 1 if no satellites are formed. The variance is given by 1/(4k). 
The value of k is typically around 7.5-10 but is varied to examine its influence. Values for k 
exceeding 10 can only occur if very low values of the dimensionless amplitude A are acceptable. 
Amplitude A is introduced for normalization purposes and is further discussed in the following. 
It will be shown that very low values of A are unlikely whence the upper bound of k is reasonable. 
If k < 7.5, the chance of primary drops with a size of about d~ig becomes too large in view of the 
estimate of dlig t o  come. 

A typical value for (6*)  is 1.2 with an upper bound of 1.6, since (S )  = 1 .6 .6~ p as discussed 
above. It is easy to see that the MMD is less than the mass mean primary droplet diameter, hence 
(6)*  is always in the range [1.0; 1.6]. 

The PDF for finding a droplet with diameter 6 in the droplet cloud after disintegration of the 
liquid sheet will be denoted by f (6)  (see figure 3). The aim of this study is the theoretical prediction 
of the distribution function with the aid of maximization of entropy. 

A COMPOSITE DISTRIBUTION FUNCTION TO ACCOUNT FOR 
SATELLITE DROPS 

Consider an ensemble of, say, 10 t° ligaments. Let N denote a total number of droplets stemming 
from these ligaments. The number of primary droplets with diameters in the range [6", 6" + d6*) 
is given by N "fo(6*)" d6*. 

Let the number N(6*) .fj (6, 6") • d6 represent the number of satellites with diameter in the range 
[6, 6 + d6) for a drop 6 *. Here .N(6*) denotes the total number of satellite droplets corresponding 
to "a drop 6""  which is shorthand for "a primary droplet with diameter 6"".  In appendix A a 
derivation is given of the following expression for the PDF: 

f(6 ) = fo (6) + f N(6 *)fo (6 *)f~ (6, 6 *) d6 *. [8] 

See figure 4. The total number of satellites with diameter in the interval [6, 6 + d6) is given by 

fNfo(6 *)f, (6, 6 *) d6 * d6. [9] 

The probability of finding a satellite with diameter 6 in the range [6, 6 + d6) to a primary drop 
with diameter 6" is either: 

--zero (no satellites in the specified range formed with drop 6"); or 
--f~ (6, 6 *) d6. 
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In the latter case Sf~ (6, 6") d6 = 1, since we are sure to find a satellite of some diameter; in the 
first case the integral has no meaning. Since this is supposed to hold for an infinite number of drops 
6", also an infinite number of normalization conditions exists, all of the form 

f~(6, 6")  d6 = 1. 

The way to handle this is described below. 
Equating the total number of droplets, N, to the sum of totals already given for primary drops, 

N S fo(6*)d3* ,  and satellites, [9], and dividing by N yields the global normalization equation: 

1 =  ff0(6*) d6* + ff:o(6.)29(3. , (6, 6.) d6* d6. [10] 

Since ~f0(6*)d&*= A, A must be < I. In a manner that will be discussed shortly, the value of 
parameter A is made consistent with the choice of 29 and [10]. 

The interpretation of A is as follows. In each unit there is, by definition, only one primary droplet. 
Division of [10] by A therefore shows that 1/,4 is the total number of drops in a unit and that 
1/A - l is the total number of satellites in the unit. Since the MMD is also the MMD of the droplets 
in a unit, conservation of mass yields: 

6~0 = A • 3.4.5.  d3g__,630 = 1.89dtig A i/3 [1 1] 

The only free parameters in the model are therefore those describing the primary droplet 
distribution f0 (k and (6") ) ,  those describing the satellite number density 29 (entailing 1 or 2 
parameters that will soon be discussed) and dlig. Our approach is phenemological in the sense that 
the parameters describing f0, N and d,g can be adapted to the system parameters, e.g. the specific 
nozzle geometry. 

Note that an experimental value for the number of satellites, I/A - 1, can be inferred from [1 1] 
and [2]. It yields about 3.4, which again indicates that in actual atomization processes satellites are 
bound to occur. A is typically in the range 0.2-0.5, corresponding to I-4 satellites. 

Although N is not known a priori, this functional relationship must satisfy requirements that are 
strong enough to make the results relatively independent of the particular choice of 29. To begin 
with, tiny droplets do not have satellites since they cannot be primary drops. There exists, therefore, 
a threshold, 6m~in, with 29(6) = 0 if 6 < 6mi n. Wavelengths less than d,g are not expected to produce 
droplets (Mansour & Lundgren 1990). Therefore, 6* must be substantially larger than dh~g, see 
figures 1 and 2. Most of the droplets with 6 less than about d~g must therefore be satellites. So the 
dimensionless ligament diameter dtig- dlig/630 is a reasonable estimate for 6mi n. Furthermore, the 
29 should have discrete values and should be monotonously increasing with increasing primary 
droplet size. The latter can be seen as follows. The ratio L/d~g is approximately constant because 
of [3]. A large 6" value requires large a value d~g (see figure 2). This corresponds to a large unit 
width, L, which requires long liquid bridgings and therefore many satellites. 

In order to make 29 amenable to numerical evaluation, it is approximated by a continuously 
differentiable function starting from 1 (see figure 5). If 29 is polynomial expanded according to 

29(6.) = bo + b, 6 * + b26"2 [I 2] 

then b0 is fixed by 29(6"~,)= I. The best results are obtained with rather rapidly increasing 
functions, which is easily understood from the fact that 29 should be an increasing function with 
discrete values. 

Now [10] can be reduced with the aid of the normalization o f / i .  Since 

f ff;,(6 *)29 (6 *)/; (a, a *) 

this yields 

da* da = f {fti(6, a*)d6t.l,,(6*)29(a*)d6*= fli,(6*)29(6*)d6*. 

t" 
1 I l l  + 2 9 ( 6 *  ~ " * = )~:/,,(b ) d6*, 

J 
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which in combination with [l2] yields integrals that are solved analytically. The result is 

1 =(I +h,M -h,(6*)A fhzA(1/2k +(6*)‘). [I31 

This equation connects the amplitude A with the satellite number density N. 

GOVERNING EQUATIONS 

The transition from ligaments into droplets requires a short period of time and is governed by 
capillary forces, see above, and we therefore consider conservation of surface energy to be the most 
important governing law. The actual surface energy in a unit in [J] is given by the sum of the satellite 
surface energy and that of the primary droplets: 

IW ~‘~:,&5*)~,((6,6*)d6 +rca~3*~6:,. 
s 

t141 

The break-up process in essence encompasses the perpetual and multiple disintegration of unit cells. 
The set of basic equations for each unit cell is given by [IS]: 

normalization, 

s 
f,(6,6*)d6 = 1; 

conservation of surface energy, 

s 6’N(d*)f,(& S*) d6 = c, - b*2 - SdlSs; 115’4 

and 

conservation of mass, 

s 
6’&6 *)fi (6,6 *) dd = c? - 6 *‘. 

DIMENSIONLESS PRIMARY DROP DIAMETER, 

Figure 5. Specimen of the relationship between the number of satellites, fl. and the 

diameter. S. 
primary drop 

[Isa] 

[15cl 
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Expressions [15a--c] hold for each primary droplet with diameter 6"  having at least one satellite. 
The dissipated energy is accounted for by Sd,ss, either known or estimated. In this study Sa,ss is put 
equal to zero without loss of  generality. By neglecting energy dissipation we merely concentrate 
on the many practical break-up regimes in which surface tension forces are much larger than 
viscous forces and liquid inertial forces are small, see Ohnesorge (1936). 

The constant c~ = dligL/62o = dl~L/63o, which typically amounts to 3.45-3.8 (using [3] and [2] 
4.5"d~g/6~o ~ 4.5.0.872). The constant c2 = 1.5(dlig)2L/c53o and is typically 4.6-4.9 (again using [2] 
and [3]). 

Equations [15a-c] could, in principle, be extended with the conservation of  linear impulse in the 
streamwise and transversal directions and with conservation of kinetic energy. However, the 
physical information contained in [15a-c] will suffice for the prediction of realistic PDFs. 

THE MAXIMUM E N T R O P Y  F O R M A L I S M  (MEF)  

The MEF provides us with a best estimate of  a PDF when a system goes from one-quasi-station- 
ary state to another, based on some given information (Jaynes 1983). Nowadays, the MEF is 
recognized as a generally applicable method of statistical inference. 

Let g~ denote a general type of  state function of a physical system and (g~) its expectation value 
that is presumably known as a bulk property of the physical system. The solution space is described 
by the differential form dfL e.g. equal to d6 • du • dr. Let all knowledge of the physical system be 
expressed in n constraints, all of  the form 

ffgg d~  = (g, >, [16] 

with f denoting the PDF that is normalized to 1. In the MEF the least-biased distribution is 
determined by maximization of an entropy that was first formulated in terms of a discrete set of 
parameters. Jaynes (1983) derived the continuous entropy 

S¢om = - k  ff(x)ln[f(x)/m(x)] dx, [17] 

with m denoting a measure of  the solution space that is 1 in our case (standard Borel-Lebesgue 
measure). The general form of the measure will be needed in the discussion of Li & Tankin's paper 
(1988). This measure assures that the entropy is invariant under transformations. It also ensures 
that the formalism is in agreement with Jaynes consistency principle that reads "Two problems with 
the same relevant physical information show the same PDF's" .  

By maximizing the entropy of [17] the distribution function is found to be 

f =  exp( -20  - 21gl-2eg2 . . . . .  2,,g,,), [18] 

where the ~.i denote as-yet undetermined Lagrange multipliers. The multiplier 20 takes account of 
normalization. If  all multipliers are known the PDF, f ,  is determined. However, the implementation 
of  the MEF is not an easy task, as is illustrated in figure 6. It depicts what may happen if incorrect 
averages are used and convergence is not really achieved. Figure 6 is discussed more fully in 
appendix B, where numerical details are presented. 

R E S U L T I N G  PDFs WITH C O N S T R A I N T S  AND A REVIEW OF 
R E L A T E D  RESEARCH 

Resulting PDFs 
The regular solution of [15a-c] would read exp{ -2 ~ (6 " )  - 21(6")" 62 - 2_;(6*). 63} according 

to the MEF as shown above. This expression is far too difficult to handle, since the dependencies 
of the functions 2i on 6"  are unknown. 
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0’ i 
- <g,> 

Figure 6. Solution space and typical examples of PDFs fcr only two physical constraints (zero-order 
moment only). 

In appendix C it is shown how [15ac] are made more accessible, taking full advantage of the 
fact that the_ primary size distribution function is relatively well-known. The resulting PDF is 
denoted as f and with the aid of the MEF is solved to be 

f= exp[ -I, -1,6? - &a3 + -A3(6* - (a)*) - 3.,6’(S* - (S)*) 

- A,sys* - (is)*) + -&(s* - (s)*)* - i,s*(s* - (s)*)* 

- &S3(S’ - (s)*)*+. . .I. K41 

It is noted that an alternative way to look at [C4] is by considering it as resulting from a 
polynomial expansion of the L:(s*) functions that came into the solution of [I5ac]. 

In appendix D it is shown that 13, &,, LIs, . . . can be well-approximated by zero. By taking 
1, = k and A,* = A,, = . . . 0, the solution forTis then demonstrated to be equal tof,(S *) .,f, (6,6*). 
This allows us to skip all higher-order normalization constraints. The resulting set of equations 
reads: 

JJ fafidddb*=A 
JJ 

S'@fJ; d8 d6 * = c:’ JJ 6 ‘&f; d6 d6 * = c; , [I91 

(S* - (S)*)S2Nf6f, d6 da* = c; (S* - (Q*)S’ii$d, d6 d6* =c;, WI 

and 

(S* - (S)*)2S2fifJ, d6 d6* = c; (6* - (6)*)'d3@faf, d6 d6* = c;, 1211 



P R E D I C T I O N  O F  D R O P  S I Z E  D I S T R I B U T I O N S  373 

with the solution, according to the MEF, 

.f~ = exp[--20-  2~ 62 - -  , ~ .263  - -  2362(6 * -- (6)*)  - -  2463(6  * - -  ( 6  >*)  

- -  2562(0  * - -  ( 6 ) * )  2 - -  2663(6  * - -  ( 6 ) * )  2 ] [22] 

with the Lagrange multipliers, 2~, determined in the manner described in appendix B. 
The set [22] was found to be robust in the sense that, in applying the MEF, convergence is almost 

always readily achieved. 

Critical &spection of previous models 

The primary problem of Sellens (1987) original approach was that his probability distribution 
was too high for very small droplet size. Li & Tankin (1988) tried to solve the problem by 
considering the droplet volume rather than the droplet diameter. However, without introducing 
a proper measure, m, the Shannon entropy of [17] is not an invariant. Li & Tankin did not take 
this measure into account, which lead to erroneous results. 

Sellens & Brzutowski (1986; Sellens 1987) tried to reduce the number of small droplets 
by invoking a "partition constraint" ~SSf/6 df~ = Kp that fixes the mean surface-to-volume 
ratio. The value of Kp was determined by varying Kp until the theoretical PDF corresponded 
to the experimental one. In our view, data fitting according to Ei l/6i=Kv was within 
Sellens' reach and would have been more appropriate. Here {6i}i is the set of measured 
diameters; 6~ might be equal to 6j for i 4:j. The "partition constraint" merely served as a 
tuning parameter. In addition, we consider the fixing of Kp as an ad-hoc postulate without much 
bearing to the actual physics involved. It, therefore, does not appear in the model presented in this 
paper. 

We also find it less justifiable to introduce a second tuning parameter. Sellens also adjusted the 
mean surface energy, whereas a theoretical estimate of ligament thickness would have been possible 
since a Dombrowski & Johns (1963) type model had already been exploited to derive liquid film 
parameters. Moreover, Sellens selection of partly tuned, partly correlated average values leads to 
solutions of type C in figure 6, as demonstrated by figures 7 and 8. Sellens did not use the algorithm 
of Alhassid et al. (1978). 
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are adopted from Sellens (1987) (see figure 7). Dimensionless diameter boundaries are 0.05 and those 

indicated in the figure: case A--2.25; case B--2.50 (Sellens' choice); case C--2.75. 

It should be well-noted that the above criticism is not meant to distract from the importance 
of  Sellen's work. To our knowledge he was the first to use the MEF to predict droplet size 
distributions. 

Figures 7 and 8 exhibit the importance of  the integration boundaries for accurate numerical PDF 
prediction. Note that the normalization in figure 7 is satisfied, since the velocity dimensions are 
not shown. The problem is that apparently good convergence is reached, whereas actually the mean 
values may not properly be balanced, as noted above. Both Sellens (1987) and Li & Tankin (1988) 
have proclaimed that integration boundaries would not be important provided the physical 
variations were covered. This is incorrect. Expanding the error-function for small boundaries and 
small droplet diameter the PDF is easily seen to be proportional to the velocity range. 

The integration boundaries in the present study typically are 0.00001 and 3.5 for 6 andd~g~,d 
3.5 for 6". Note that all governing equations except the normalization constraint contain N(6*), 
which is zero for 6" < dj~g; the normalization equation only applies to primary droplets that do have 
satellites. 

Comparison with the present stud), 

The conservation laws as proposed by Sellens (1987) and Li & Tankin (1988) do not give 
sufficient or proper information to predict realistic PDFs. We were unable to improve their results 
by postulating a meaningful extra constraint. Note that each constraint must have the specific form 
of [20], which all but facilitates the formulation of constraint if a complex process such as the 
break-up of  a liquid sheet is studied. 

However, it is not mandatory to put all physics in the form of constraints. Much relevant 
break-up process information is present in the Dombrowski & Johns (1963) model and is 
incorporated in the present model via the primary size distribution function. This approach must, 
of course, be accompanied by the invocation of a satellite distribution function. The latter has a 
clear physical meaning which renders the entire solution procedure powerful. 

The two quasi-stationary states studied with the MEF are the ligament stage and the 
droplet flow, as depicted in figure I. The evolution of one state into the other depends on the 
conservation laws and built-in physical constraints that have been formulated before. The MEF 
provides us with the PDF for the droplet flow that takes into account all these physical limitations 
and nothing else. 
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RESULTS AND DISCUSSION 

Adjustable parameters and their relationships in the present model 

The primary size distribution function,f0, the satellite number density, .N, and the dimensionless 
ligament diameter, dlTg = d~g/630, are the main input parameters of the present model. The first 
function is described by the average value, (6" ) ,  the variance, I/(4k), and the amplitude A, see 
[7]. The function .N is described by three parameters b~, see [12]. 

Several relations and restrictions hold for these parameters. Equation [1 1] links A to dl?g; N(d~ig) 
must be equal to i; [13] links A to .N. The accessible ranges of most parameters are well-confined, 
as shown above. In addition, all averages (g~), or constants c, must be such that the system of 
governing equations can be solved properly and a realistic PDF obtained, see above and figure 6. 

One way to take all the relations into account is by selecting merely two free parameters, dhg 
and b,. The amplitude A then follows from [11] and with some algebra it is easily shown that 

b2 = [1/A - 2 + bi(d,g + ( 6 " ) ) ] / ( 1 / 2 ~  + ( 6 " )  ~ - d~ 0 ,  

from which b0 follows according to b0 = 1 - b l d t i g -  bzd~g. 
Figure 9 is obtained with this procedure, and this typical result will be shown to be realistic. 

However, in our view, the parameter d~ig should be an experimentally-determined parameter, 
possibly dependent on, for example, nozzle type. The only experimental values of d~g that are 
known to us have been obtained by Sellens (1987) (see [2]), and these are not particularly accurate 
data. The determination of the ligament thickness and the number of satellites for several nozzles 
under different conditions seems to be the next fundamental step in spray research. The connection 
of the ligament thickness with the number of satellites is given by [11] and it will be a real challenge 
to design an experiment in which the number of satellites, I/A - 1, is counted and 630 and dlig a r e  

measured simultaneously. 
Until such experiments have been performed, the amplitude A can be considered as a parameter 

that must be close to the estimate given by [1 1] but is otherwise adjustable. Also the constraint 
on the averages, see figure 6, makes it more appropriate and convenient to loosen the ties between 

U. 

I I I 

0 0,5 1 1,5 2 

DIMENSIONLESS DROPLET DIAMETER, (~ 

Figure 9. Example  of  a computed  PDF:  ,: .0=0.88272261, ).~ = - 6 . 2 0 6 5 6 9 6 ,  ,; .2=4.88484832, ).~= 
-20 .38830255 ,  24 = 28.09509767, 25 = - 126.69362377, 2~, = 159.72616593: N I l * )  = 0.25372 + 0.936" 

+ 0.147926 "-' if 6 "  >~ 0.72: dti ~ = 0.72: k = 70: A = 0.39684: ( 6 " )  = I. 15. 
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Figure 10. Example of a computed PDF: 20=1.46592611, 21=-1.74638951, 22=0.91995473, 
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6"/>0.88; dli~ = 0.88; k = 10; A =0.384; (6"} = 1.15. 

A and dl~g and not to consider d~ig as the primary adjustment parameter. Figure 10 is obtained in 
this manner and it also shows a realistic PDF. 

Our approach is phenomenological in the sense that there exist two parameters which must be 
adapted to the system parameters and upstream conditions. I f  we were to model quite different 
break-up processes, such as the break-up of cylindrical, turbulent jets, some parameters would have 
to be adapted. If, in addition, other physical mechanisms were involved, such as the transfer of 
kinetic energy between the turbulent air and the jet, additional constraints or parameters describing 
these mechanisms would have to be formulated. In any case, there is considerable potential for 
application to other modes of atomization. This makes it quite plausible that there are some 
parameters that must be adapted to the specific atomization mode. Apart  from this, the natural 
freedom our model is rigorous and does not need arbitrary constants. 

Trends and comparison with experiments 

Figure 9 shows a typical predicted PDF. This PDF is fairly welt balanced over all droplet 
diameters, implying that there is no surplus of  small droplet sizes. It is noted that this result is 
achieved without invoking extra constraints or additional fit parameters, in contrast with the 
theoretical results of  Sellens (1987). 

Figures 9 and 10 also show that, as a consequence of satellite formation, the PDF shape, in 
general, becomes slightly bimodal. The extent to which this happens depends on the ~7 or the 
parameter  b~, which in principle could be measured independently. Such measurement would be 
extremely difficult and tedious, but so are direct and accurate measurements of  PDFs. Sellens (1987) 
has measured PDFs quite close to the ligament stage to reduce the possiblity of  size dispersion due 
to droplet interaction and interaction between droplets and the surrounding air. His PDFs all 
resemble those represented in figure 1 1. These PDFs are also bimodal, which is quite encouraging. 
Sellens (1987) describes the extra peak at a 6-value of about 0.5 as a "shoulder" and qualitatively 
explains its existence with radial entrainment effects affecting the localized measurements. In our 
view, the formation of satellites offers a much more natural explanation. 

If  the number of  satellites is low with respect to the number of  primary droplets, then the 
maximum of the computed PDF is largely determined by the maximum of the primary size PDF, 
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Figure 11. Typical examples of measured PDFs, after Sellens (1987). 

f0. This stands to reason, since satellite formation is then not the most dominant mechanism 
involved. The droplet diameter for which f0 is maximum generally depends on the nozzle type and 
upstream conditions as discussed above. 

How the predicted PDFs f and f~ depend on the adjustable parameters is examined by varying 
one parameter at a time. The dependencies are now discussed and will be seen to stand to reason 
and to exhibit no sudden changes. 

Increasing the value of b~ or b2 naturally increases the relative amount of small satellite. 
Increasing b2 renders the PDF more pronouncedly bimodal than increasing b~. Increasing the value 
of k naturally increases the maximum number of primary drops, since the spread in fi* is 
proportional to x/~, see figures 9 and 10. 

I n c r e a s i n g  dlig or decreasing (6 *) increases the number of larger satellites relative to the number 
of small satellites and makes the PDF, f ,  look less bimodal. The effect of dlig is trivial and is due 
to the fact that larger primary drops have more, although smaller, satellites due to growing liquid 
bridgings (see above and [3]). The effect of ( 6 " )  is easily understood from the fact that the total 
mass of a unit cell is kept constant while varying (6*) .  

Let the satellite distribution function, f~(6), have a maximum a t  6 m a  x.  If 6* increases, 6max 
decreases and f~ (6max) increases, as shown in figure 12. As argued before, larger primary drops have 
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Figure 12. Specimens of the satellite distribution function, f~, for some primary droplet sizes. 
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more, although smaller, satellites due to the increasing liquid bridgings, so this trend once again 
stands to reason. The computed satellite distribution functions satisfy approximately the normal- 
ization condition of  [15a]. This result can be improved by increasing the number of moments of 
.)Co that are included in [16]. The rather high values of the Lagrange multipliers of the highest 
moments, )~5 and 2 0, of  figure 9 also show that increasing the number of moments in [16] would 
improve the results. 

C O N C L U S I O N S  

The MEF can be used to predict realistic size distributions. Apart from a standard normalization 
procedure the only physical constraints needed in the model are conservation of mass and 
conservation of surface energy. These constraints are applied to so-called unit cells only and not 
to the liquid sheet as a whole. The velocity PDF is seemingly inessential. 

The predicted results are quite realistic, even for very small droplet sizes where other models 
failed without an artificial constraint. 

Part of this success might be due to the fact that the model takes satellite formation into account. 
The primary droplet distribution function and the number of  satellites are not known exactly a 
priori but are not critical and could, in principle, be determined with dedicated measurements. 

Predicted PDFs have a tendency to be bimodal, which is in accordance with measurements 
performed relatively close to the liquid sheet (Sellens 1987). This correspondence indicates that 
satellite formation might be quite important. There exists some direct experimental validation of 
the satellite formation process in droplet clouds. However, the next fundamental step in spray 
research is the determination of ligament thickness, the number of satellites and the MMD 
simultaneously for several nozzles under different conditions. 
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APPENDIX A 

Derivation off1 

Let fl(6, 6")d6 be the probability of finding precisely 1 satellite droplet with diameter in 
the range [6, 6 + dS) if a droplet with diameter 6" is formed in a single unit. Let f2(6, 6")d6 
be the probability of finding a total of precisely 2 satellite droplets with diameters in the 
range [6, 8 + dS) if a droplet with diameter 8" is formed in a single unit. Similarly t"3 etc. are 
defined (see figure 4). The probability of finding precisely 1 satellite droplet with diameter in the 
range [8, 8 + dS) is given by ffo(f*)fl(6, 6")d6"  etc. The probability of finding a droplet with 
diameter 6 in the range [6, 8 + dr) in the droplet cloud after ligament break-up is now given by 
f (6 )  dS, with 

f ( 8 )  = fo(8)q-  ~fo(~*)fi (~, 8")  d~* -4- 2 ffo(8*)f2(8, 8*)d~*  --t- 3 ffo(~*)f3(~ , 8")  d¢~* -b ' • • . 

The factor 2 in this equation stems from the fact that f2 is the probability for a pair of 
droplets, whereas f is the probability for a single bubble. Since it is not known a priori when 
the repeated break-up of liquid bridgings stops (see above), it is not clear where the series on 
the RHS of the above equation for f should end or how it converges. It is, therefore, condensed 
into 

f(8) = fo (8) + f N(~ *)fo (8 ,~c (~, ~ ,) d8 * 

The symbols used in this equation are defined and explained in the main text. 

APPENDIX B 

The Implementation of the MEF 

The Lagrange multipliers are numerically determined with the aid of a Newton-Raphson 
procedure. Just as Stellens (1987) did, we enforced the normalization constraint at every 
iteration. For the numerical implementation, use was made of the algorithm of Alhassid et al. 
(1978) to promote convergence. Without this algorithm it is sometimes impossible to achieve 
convergence. 
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With one of the criteria of Alhassid et al. (1978), it is possible to examine whether the averages 
are properly balanced in the sense that realistic and sensible PDFs are produced. The impact of 
this balancing is illustrated in figure 6 for the sample case of two physical constraints: 

f fd f~=l ; f f62d~=(g , ) ; f f63d~=(g2) ; f=exp( -2o-2 ,62-2263) .  

The lower border of  the accessible region depicted in figure 6 follows from the criterion of Alhassid 
et al. (1978). Close to this border, the PDF is similar to Dirac's delta function. The upper border 
in the same figure follows from the demand that the PDF is integrable so must be bounded at 
infinity. If the averages are not well-balanced the latter demand is not fulfilled and computed PDFs 
are unrealistic, as exhibited by case C in figure 6. The higher the number of constraints that have 
to be fulfilled, the more difficult it is to find averages in the appropriate range. 

It is noted that the integration accuracy may have a strong impact on the values of the 
Lagrangian multipliers. It may happen that convergence has seemingly been reached but that upon 
improving the integration accuracy the Lagrangian multipliers, and hence the PDF, drastically 
change. Before carrying out numerical integration all integrals are therefore reduced as much as 
possible to integrals of the type ~ t q. e x p [ - k ( t  +/02] dt, which are solved analytically. An adapted 
Romberg scheme is applied for the subsequent numerical integration. 

A P P E N D I X  C 

Reduction of the Set of Governing Equations 
In order to make [15a-c] more accessible, use is made of the primary size distribution function 

and the fact that f0 is characterized by all its moments. Since the MEF can only determine 
multivariate single-valued functions, the product f0 "fi is redefined as f In principle, it is also 
allowable to solve for fi only, but this yields expressions of the type exp[exp(q~)- q2] with qi a 
polynomial in 6 and 6"  and these expressions are extremely difficult to integrate. In appendix B 
it is shown that the integration accuracy is very important in the MEF. 

Equation [I 5a-c] is multiplied with f0(6 *) • [6 * - (6 *)]", with s denoting the order of the moment 
off0,  and is subsequently integrated over 6". Introducing f and truncating after s = 2 yields the 
following set of  integral equations: 

f f f  66 66" = Co,° f f  62~Yd6 66, =c?, ff63~yd6 66, __cO;_ [CI]  

ff(6*-(6)*)Td6d6*=c~, ff(6*-(6)*)62Rfd6d6*=c, 

and 

f f  (6* - (6)*)2fd6 d6* = c~, 

f f  (6* -- (6)*)63Nf d6 d6* = c~" [c2]  

f(6* - <6 )*)26-':97 d6 d6*  = c~, 

f(6* - <6>*)26~R~d6 d 6 *  = c~- [C3] 

with the constant c o = A and the constant c o corresponding to the zero-order expansion and equal 
to the integral I ( c , -  6*2)fo(a*)d6 *, whose value is known. The other constants c I are defined 
similarly. With the aid of the MEF [C1]-[C3] are solved to yield 

.,7= e x p [ -  20 - Z,62 -2263 + 

--23(6"--(6)*)--2462(6"--(6) *) --2563(6"--(6)*)+ 

--).6(6"-- (65")  2 -  Z762(6 * -- ( 6 )* )  2 -2~63(6 * - (65")  2 + . . . ] .  [C4] 
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A P P E N D I X  D 

Reduction of the Set of Lagrange Multipliers 

In this appendix the proof is briefly outlined of the corollary stating that 

/~3' 29 '  215 . . . . .  

with each 2i defined by [20], can be well-approximated by zero i fk is sufficiently large. This corollary 
is useful in recognizing the distribution function f as the product f ~ .  

For clarity and brevity, the following definitions are introduced: y = 6" - (6 *) and g + = S f  d6. 
Notice first that all constants, c, in [19] that are related to the Lagrangian multipliers in question 
are zero, due to the fact that f0 is even, i.e. co' = c30 = co 5 = c 7 . . . . .  0. This implies that for each 
positive integer k, 

;o 0 = y~g+(y) dy = yk{g+(y) _ g ÷ ( _ y ) }  dy. 

For each uneven function q, therefore, 

f0 '~ q { g + O ' ) g + ( - Y ) }  = O. dy 

In a similar manner it is shown that 

f0 ~ - dy 
/: {g" + ( y )  g + ( - y ) }  0 

for each even function v. The approximation stems from the fact that the constant S y2Pfo is inversely 
proportional to 2 :÷ Jk~x/~ and so it is not exactly zero in the lowest orders, although it rapidly 
approaches zero at higher order p. To a certain degree of approximation [ g + ( . v ) - g ÷ ( - y ) ]  is, 
therefore, equal to zero in the L2-norm, implying that g + should be even. Since g + can be written 
as a product of e x p ( -  23y - - , ~ , 9 y  3 . . . .  ) and ~, with tp defined as ~ s(6, y)d6 for some function 
s(~, y). Since tp is analytical at y = 0 it is not difficult to prove that only one function ~o exists that 
satisfies the requirement that g ÷ is even. However, q~ contains independently variable Lagrangian 
multipliers so 23 = 2 9  . . . .  = 0. 


